On the Mahalanobis-distance based penalized empirical likelihood method in high dimensions

نویسندگان

  • S. N. Lahiri
  • S. Mukhopadhyay
چکیده

In this paper, we consider the penalized empirical likelihood (PEL) method of Bartolucci (2007) for inference on the population mean which is a modification of the standard empirical likelihood and employs a penalty based on the Mahalanobis-distance. We derive the asymptotic distributions of the PEL ratio statistic when the dimension of the observations increases with the sample size. Finite sample properties of the method are investigated through a small simulation study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Mahalanobis Distance Based Rival Penalized Competitive Learning Algorithm

The rival penalized competitive learning (RPCL) algorithm has been developed to make the clustering analysis on a set of sample data in which the number of clusters is unknown, and recent theoretical analysis shows that it can be constructed by minimizing a special kind of cost function on the sample data. In this paper, we use the Mahalanobis distance instead of the Euclidean distance in the c...

متن کامل

Applying the Mahalanobis-Taguchi System to Vehicle Ride

The Mahalanobis Taguchi System is a diagnosis and forecasting method for multivariate data. Mahalanobis distance is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. The Mahalanobis Taguchi System is of interest because of its reported accuracy in forecasting small, correlated data sets. Th...

متن کامل

Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods

Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...

متن کامل

Determination of Best Supervised Classification Algorithm for Land Use Maps using Satellite Images (Case Study: Baft, Kerman Province, Iran)

According to the fundamental goal of remote sensing technology, the image classification of desired sensors can be introduced as the most important part of satellite image interpretation. There exist various algorithms in relation to the supervised land use classification that the most pertinent one should be determined. Therefore, this study has been conducted to determine the best and most su...

متن کامل

Generalized Linear Model Regression under Distance-to-set Penalties

Estimation in generalized linear models (GLM) is complicated by the presence of constraints. One can handle constraints by maximizing a penalized log-likelihood. Penalties such as the lasso are effective in high dimensions, but often lead to unwanted shrinkage. This paper explores instead penalizing the squared distance to constraint sets. Distance penalties are more flexible than algebraic and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012